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We propose a method for generating well-shaped curved unstructured meshes using a
nonlinear elasticity analogy. The geometry of the domain to be meshed is represented as
an elastic solid. The undeformed geometry is the initial mesh of linear triangular or tetra-
hedral elements. The external loading results from prescribing a boundary displacement to
be that of the curved geometry, and the final configuration is determined by solving for the
equilibrium configuration. The deformations are represented using piecewise polynomials
within each element of the original mesh. When the mesh is sufficiently fine to resolve the
solid deformation, this method guarantees non-intersecting elements even for highly dis-
torted or anisotropic initial meshes. We describe the method and the solution procedures,
and we show a number of examples of two and three dimensional simplex meshes with
curved boundaries. We also demonstrate how to use the technique for local refinement of
non-curved meshes in the presence of curved boundaries.

I. Introduction

The use of high order methods for computational mechanics has been emphasized in recent years. This
has been motivated by the need to tackle problems where high accuracy is a requirement, but also by the
emergence of unstructured discontinuous Galerkin finite element methods1 which appear to combine the
right mix of geometric flexibility, stability, and accuracy.

The main advantages of unstructured mesh methods using tetrahedral elements derive from the availabil-
ity of automatic mesh generators.2–5 These generators are capable of producing meshes of linear tetrahedra
automatically from CAD data and hence give a major advantage over other more user-intensive approaches.
For high order methods, the linear elements are not adequate since they produce a planar faceted represen-
tation of the geometry which negates the advantages of using high order methods.

The generation of high order meshes which conform to the boundary geometry is not a well resolved issue.
When small isotropic elements are used it is often possible to just deform the boundary of the elements which
are in contact with the curved boundary. However, this simple strategy fails when either the elements are
large, as desired in high order methods, or the required grids are highly anisotropic, such as in boundary
layers. In these situations, it is not sufficient to simply deform the edges of the elements that are on the
boundary, but it is necessary to propagate the mesh deformation into the domain interior.

Previous work on curved mesh generation include Refs. 6–8, where algorithms for curvilinear meshing are
proposed. These methods identify mesh entities that produce invalid elements, and eliminate the problems
by a combination of local mesh refinements, edge and face swaps, and node relocations. In Ref. 9, various
solutions were proposed, including hybrid meshing using prism elements close to the curved boundary, and
a curvature based refinement procedure.
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Figure 1. The mapping between the reference volume V and the physical volume v.

In this paper, we propose an approach to deform an automatically generated triangular mesh into a
curved boundary conforming mesh. We use a nonlinear elasticity analogy, where the geometry of the domain
to be meshed is considered an elastic solid. By prescribing the boundary displacement to be that of the
curved geometry, external loadings are obtained. The final configuration is determined by solving for the
equilibrium configuration. The deformations are represented using continuous piecewise polynomials within
each element of the original unstructured mesh. We describe the methods and show examples of successfully
generated curved meshes involving highly curved boundaries, anisotropic boundary layers, and large number
of elements.

II. Problem Formulation

A. Non-linear Lagrangian Formulation

We use a Lagrangian formulation,10 where the solid configuration is defined by a mapping between the
reference volume V and the physical volume v of the form x = x(X), see Fig 1. Here, x is the equilibrium
position vector of a point in the reference configuration with material coordinate X. We differentiate x with
respect to space to obtain the deformation gradient tensor F :

F =
∂x

∂X
. (1)

Furthermore, we introduce the determinant J = det(F ), which gives the ratio between a volume element
in the reference and in the physical configuration. Conservation of mass requires that the density in the
physical configuration ρ and in the reference configuration ρ0 are related by ρJ = ρ0. For a force equilibrium,
we require that for for an arbitrary reference volume V ,∫

V

ρ0b dV +
∫
∂V

t dA = 0, (2)

where b are the external volume forces per unit mass. The traction vector in the physical configuration
t for an area element dA in the reference configuration is related to the unit normal N in the reference
configuration by the first Piola-Kirchhoff stress tensor P :

t = PN . (3)

Applying the divergence theorem to (2) and setting the external forces b = 0 lead to the equilibrium condition

∇ · P = 0, (4)
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Reference domain and initial configuration Equilibrium solution and final curved mesh

Figure 2. The solid mechanics approach to curved mesh generation. When the boundaries of the mesh are
curved, the elements are deformed according to the equilibrium solution of a nonlinear elasticity problem.

where ∇ is the gradient operator in the reference space. We use a neo-Hookean constitutive model for P
defined by10

P (F ) = µ((F TF )F−T − F−T ) + λ(ln J)F−T , (5)

with shear modulus µ and Lame constant λ. On the boundary ∂V of the domain we impose Dirichlet
conditions:

x(X) = xbnd(X), X ∈ ∂V, (6)

where xbnd(X) is a given prescribed position for the boundary of the physical domain.

B. Generating Curved Meshes using Solid Mechanics

In our curved mesh generation algorithm, we view the initial, straight-sided mesh as the undeformed con-
figuration of a solid, see Fig. 2 (left). This is also the reference domain V . The external forces come from
prescribing the position of the nodes on the boundary to be on the true curved geometry, resulting in the
Dirichlet boundary conditions xbnd in (6). We solve (4) for an equilibrium configuration x = x(X), and
obtain the actual curved mesh as the deformed shape in the physical domain v, see Fig. 2, (right).

We note that our formulation requires Dirichlet conditions xbnd at all domain boundaries. In this work,
these conditions are obtained with an element-wise local approach. For each element face located on a curved
boundary, we either project the nodes to the true boundary or evaluate the node positions using mappings
from a parameter space. For the three-dimensional surfaces, we apply some smoothing within each triangular
element to improve the shapes.

In a more general setting, the boundary data would also have to be solved for using the elasticity analogy
in order to avoid self-intersecting elements. We mention two possible solutions for this:

• A bottom-up approach, which is standard in most mesh generation algorithms, would treat the entities
of the geometry in order of increasing dimension. The geometry vertices are first placed, then the
curves are meshed, then the surfaces, and finally the volume. In this setting, it is natural to apply our
elasticity technique individually at each level by solving for well-shaped elements in each parameter
space. Distorted mapping would have to be compensated for by solving using a different metric, similar
to the ones used for the actual mesh generation.11

In practice, one would only apply the elasticity method on the surfaces and the volume, since the
non-intersecting meshing of curves and vertices is straight-forward. This method also has the benefit
that all subdomains are decoupled, resulting in higher performance and improved parallelization.

• Alternatively, one could relax the boundary conditions and allow for the boundary points to move
along the true surface. The entire problem would then be solved using only one elasticity problem,
which would determine node points inside the domain as well as on all the boundaries. This would
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likely produce better shaped curved elements, and the approach would be more consistent with the
physical analogy of an elastic solid.

Finally, we note that the domain V can be chosen arbitrarily, which means that in particular only a
subset of the elements could be used for the elasticity model. This can have important benefits, including

• Improved performance by only solving for elements that are likely to be highly curved. In our large
three dimensional examples, we have used this technique and solve only for a layer of neighbors to the
elements at the boundary.

• Non-curved elements have certain benefits when used with high-order finite element methods, since
they produce a linear mapping between a reference element and the true element. This simplifies the
assembly procedure, reduces the degrees of the integrals that have to be evaluated, and makes the
elemental mass matrices scalar multiples of the reference mass matrix. By forcing a large number of
elements to remain non-curved, the solver can take advantage of these properties.

III. Discretization and Solution Procedure

A. The Finite Element Formulation

To develop a finite element formulation for (4), we define the space of continuous piecewise polynomials of
degree p:

V ph = {v ∈ [C0(Ω)]3 | v|K ∈ [Pp(K)]3 ∀K ∈ Th}, (7)

where the domain Ω is divided into elements Th = {K}, and Pp(K) is the space of polynomial functions
of degree at most p ≥ 1 on K. Furthermore, we define the subspaces of functions in V ph that satisfy the
non-homogeneous Dirichlet boundary conditions:

V ph,D = {v ∈ V ph ,v|∂V = xpbnd}, (8)

as well as the homogeneous Dirichlet boundary conditions:

V ph,0 = {v ∈ V ph ,v|∂V = 0}. (9)

Here, xpbnd is a suitable projection of xbnd onto the space of piecewise polynomials of order p defined over
∂V . By multiplying (4) by an arbitrary test function z ∈ V ph,0, integrating over the domain V , and applying
the divergence theorem, we obtain our finite element formulation: find xh ∈ V ph,D such that for all z ∈ V ph,0,∫

V

P (F (xh)) · ∇z dV = 0. (10)

The system of equations (10) is implemented using standard finite element techniques. The discrete
solution vector x̄ and test function z̄ are represented at the nodes using nodal basis functions. The integrals
are computed using high-order Gauss integration rules. The computed elemental residuals are assembled
into a global discrete residual vector r̄(x̄), and a nonlinear system of equations

r̄(x̄) = 0 (11)

is obtained. We solve this using a standard Newton method, where we start from an initial guess x̄(0) and
iterate by

x̄(k+1) = x̄(k) −K(x̄(k))−1r̄(x̄(k)). (12)

Here, the Jacobian matrix K = ∂r̄/∂x̄ is evaluated for each element and assembled into a global matrix,
stored in the sparse compressed column format. The prescribed displacement at the boundary nodes is
imposed by elimination of the corresponding variables from the system of equations.

The linear systems of equations that are obtained in the Newton iterations,

K∆x̄ = f (13)

are solved using a standard restarted GMRES algorithm,12 preconditioned with a threshold incomplete
LU factorization.13,14 This provides sufficient performance for all our examples, which include fairly large
problems. However, if required, a large variety of specialized solvers are available for these problems, including
multigrid-based schemes and variants for parallel computers.15
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B. The Adaptive Newton-Krylov Solver

In simple cases, the nonlinear system of equations (11) can be solved using a standard Newton method as
described above. However, in general more sophisticated methods are required. To see this, it is clear that in
the first Newton iteration, the iterate x corresponds to the initial, straight-sided mesh, but with the Dirichlet
boundary conditions imposed. This is equivalent to curving the boundaries but not the interior, which will
generally lead to inverted elements and obvious numerical difficulties.

To obtain a robust global convergence in the non-linear solver, we use homotopy in a scalar variable α.
We define a series of problems r̄α(x̄α), parametrized by α, with Dirichlet boundary conditions

xbnd = αx0 + (1− α)xcurved. (14)

When α = 0, the boundary conditions reduce to the initial locations x0, which are already satisfied by the
initial configuration and require no solving. By slowly increasing α from 0 to 1, we approach the actual
problem with boundary conditions xcurved. This results in a series of well-behaved problems that can be
solved using regular Newton iterations.

In practice, the selection of the sequence of α-values can be automated in an adaptive way using simple
control mechanisms. We control the increase ∆α by monitoring the Newton convergence. If the method
does not converge or inverted elements are found during the assembly process, then ∆α is reduced. If the
Newton method converges fast enough, ∆α is increased. The final non-linear solution algorithm has the
following form:

function x = AdaptiveNewton(x0)
Description: Solve rα(x) = 0 for α = 1 by adaptive homotopy in α

x = x0 Initial configuration
α = 0, ∆α = 1 Start at 0, attempt full first step
while α < 1

xold = x, αold = α Backup old solution
α = min(α+ ∆α, 1) Advance α
Solve rα(x) = 0 using Newton’s method Terminate early if NaNs or Infs
if Newton convergence

∆α = 2∆α Accept step, increase stepsize
else

x = xold, α = αold Revert to old solution
∆α = ∆α/2 Decrease stepsize
if ∆α < αmin

Solver failed No further increase possible

This simple strategy can certainly be improved upon, but it does contain the essential ingredients of
adaptive parameter stepping based on feedback from the Newton convergence.

IV. Results

A. Curved Mesh Generation

We now show a number of two and three dimensional meshes with curved boundaries that are generated
using the proposed technique. In all examples, we use polynomial approximations of degree p = 4 and set
Poisson’s ratio ν = 0.4. To measure how much an element has been deformed, we use the scaled Jacobian
measure6

I =
minX∈κ J(X)
maxX∈κ J(X)

(15)
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a) Element-wise curving
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b) Elasticity equilibrium

Figure 3. A simple example of isotropic two dimensional curved mesh generation. A simple element-wise algo-
rithm generates non-inverting elements (top), but the elasticity equilibrium produces larger scaled Jacobians
which means better shaped elements.

where J(X) = det(∂x/∂X) is the Jacobian of the mapping from the reference coordinate X to the physical
coordinate x. We note that I ≤ 1, and I = 1 for a straight-sided simplex element (since J(X) is then a
constant).

Note that the definition of the scaled Jacobian I is independent of the element quality of the corresponding
mesh element.16 Even a poorly shaped element will have the optimal I = 1 if it is straight-sided. However,
as I gets negative or small, the effect of the curving is that the element gets inverted or close to being
degenerate. This typically decreases the quality of discretizations on the mesh and makes the corresponding
systems of equations ill-conditioned.

1. Simple triangular mesh

Our first example is a simple isotropic mesh with well-shaped triangular elements. Fig. 3 shows a zoom-in
around the curved boundary. Two strategies are compared – a simple element-wise curving of the boundary
elements (top) and the elasticity equilibrium (bottom). Although all the scaled Jacobians I are positive for
both approaches, they are much closer to 1 using the solid mechanics method.

2. Anisotropic triangular mesh

Next, we show an anisotropic mesh with element ratios as high as 100:1, see Fig. 4. Here it is clear that an
element-wise approach would not work, but all of the elements in the anisotropic boundary layer mesh must
be curved.
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Original mesh Curved mesh

Figure 4. Anisotropic curved mesh generation. Note that the curved boundaries must affect a large layer of
elements inside the domain in order to avoid inverted elements.

3. Tetrahedral mesh around a sphere

In Fig. 5, a tetrahedral mesh of the exterior of a sphere is shown. The volume mesh was generated using a
standard Delaunay refinement method, and although the tetrahedra are well-shaped, a simple element-wise
curving would not work. With our elasticity method, well-shaped curved elements are produced. We also
show the convergence history of the adaptive Newton solver, showing that it required 4 steps to obtain the
final mesh and highlighting the benefits of using an adaptive approach to select the sequence of homotopy
parameters α.

4. Tetrahedral mesh of cylindrical component

In Fig. 6, an unstructured tetrahedral mesh of a cylindrical component is shown. We note that the method
handles thin structures, even with only a single layer of elements, and it produces well-shaped curved
elements.

5. Tetrahedral mesh of Falcon aircraft

In our final example we consider a complex, unstructured, real-world mesh as shown in Fig. 7. The mesh
is relatively coarse, although for high-order methods it is a rather realistic inviscid mesh. We note that the
highly distorted elements are located around edges of high curvature, but the elasticity equilibrium mesh
does not have any inverted elements. The adaptive Newton solver required only 7 steps to reach the true
curved boundary at α = 1.

B. Local Mesh Refinement for Curved Meshes

As another application of our technique, we illustrate the use of the mesh deformation approach to perform
local refinement of unstructured meshes in the presence of curved boundaries. Note that we are now consid-
ering regular linear elements, and apply the elasticity method with piecewise linear approximating functions.
The approach is illustrated in Fig. 8. An original mesh is refined using standard local mesh refinement
techniques,17 without consideration of the true, curved boundary. The newly created nodes located on the
boundary are then constrained to the true boundary, and a well-shaped non-inverting mesh is solved for
using the solid equilibrium.

The procedure is straight-forward and it requires no additional developments for the refinement, since it
is performed on a polygonal or polyhedral geometry. It is even capable of refining unstructured anisotropic
meshes, without requiring unnecessary refinements along the boundaries. Standard mesh smoothing algo-
rithms can of course be applied on the final mesh, which is boundary conforming and well-shaped from using
the elasticity approach.
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a) Original mesh b) Curved mesh
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c) Convergence of the adaptive Newton solver
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d) Scaled element Jacobians (boundary elements)

Figure 5. Curved mesh of the exterior of a sphere, using polynomials of degree p = 4. Even for this well-shaped
isotropic mesh, it is essential to allow for curved interior edges to avoid inverted elements.

V. Conclusions

We have presented a new technique for generation of curved meshes based on a nonlinear elasticity anal-
ogy. The method is highly resistant to inverted elements and typically produces very well-shaped elements.
Another benefit is that it curves the original mesh, without introducing new nodes or modifying the mesh
topology. Finally, we showed how the same framework can be used for the problem of locally refining an
unstructured mesh close to curved boundaries.

We have applied our technique on many problems with excellent results, and future work include the de-
velopment of the techniques mentioned in section II for obtaining the boundary data, and possibly improving
the performance of the solver with parallelization and other solution algorithms.
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c) Curved mesh, split view
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Figure 6. Curved mesh of a cylindrical component, with polynomial degrees p = 4. The method easily handles
thin structures, even with only a single element across the thickness.
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a) Original mesh

b) Curved mesh, elements with I < 0.5
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c) Convergence of the adaptive Newton solver
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d) Scaled Jacobians, local curving only
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e) Scaled Jacobians, elasticity equilibrium

Figure 7. Curved mesh of a Falcon aircraft. Note that with only local curving of the boundary elements, many
elements invert (I < 0).
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Geometry Initial mesh

Local refinement of non-curved mesh Curved boundary and equilibrium solution

Local refinement of non-curved mesh Curved boundary and equilibrium solution

Figure 8. The solid mechanics approach to local mesh generation with curved boundaries. The interior nodes
are determined by the equilibrium solution of a nonlinear elasticity problem, which avoids inverted elements
at the curved boundaries.

11 of 11

American Institute of Aeronautics and Astronautics


